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A covalently linked ruthenium tris(bipyridyl) complex
and viologen have been chemisorbed at the surface of the
constituent nanocrystals of a transparent nanostructured
TiO2 ®lm supported on conducting glass. This resulting
heterosupramolecular assembly, when incorporated as
the working electrode in a sealed two-electrode cell,
yields a device which can be written to using blue±green
light, read using red light and erased by applying a
voltage.

Chemists have long suggested that the covalent and non-
covalent assembly of molecular components and their
subsequent organization will yield devices based on supramo-
lecular function addressable on the nanometer-scale.1,2

Recently, chemists have also begun to suggest that the
covalent and non-covalent assembly of condensed phase and
molecular components and their subsequent organization will
yield devices based on heterosupramolecular function addres-
sable on the nanometer-scale.3,4

There are a number of reasons why devices based on
addressable heterosupramolecular function are of interest.
First, greater functional diversity may be achieved because
both condensed phase and molecular components are used to
assemble heterosupermolecules; second, proven technologies
from the electronics sector may be used to individually address
the condensed phase component of each heterosupermolecule;
and third, the functional state of each heterosupermolecule

may be switched by modulating a bulk property of the
condensed phase component.

The heterosupramolecular assembly denoted TiO2±RV was
prepared as shown in Scheme 1 by covalently linking two
molecular components,5,6 namely a ruthenium tris(bipyridyl)
complex (R) and a viologen (V), and a condensed phase
component,7 namely a constituent nanocrystal of a transparent
nanostructured TiO2 (anatase) ®lm supported on conducting
glass.8 This heterosupramolecular assembly was incorporated
as the working electrode in a three-electrode cell.9 The cell was
®lled with a mixed organic solvent containing the electrolyte
tetrabutylammonium perchlorate (TBAP) and the sacri®cial
donor triethanolamine (TEOA). The reference and counter
electrodes were platinum and conducting glass, respectively.

As can be seen from Fig. 1, irradiation of TiO2±RV at an
applied potential of 20.45 V using the defocused blue±green
output of an argon-ion laser leads to reduction of a signi®cant
fraction of the viologen components present in the assembly
and to an absorption spectrum characteristic of the corre-
sponding radical cation.10,11 Furthermore the radical cations
formed, which otherwise persist on the time-scale of hours, are
completely reoxidized in v15 s at an applied voltage of
z1.00 V.

A detailed mechanism has been proposed to account for
these ®ndings.6 Brie¯y, at an applied potential equal to that of
the conduction band edge of the TiO2 nanocrystal, 95% of the
electronically excited ruthenium complex components transfer
an electron to the TiO2 nanocrystal component,5,12 while the
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other 5% transfer an electron to the viologen component.5,13

Electrons transferred to the viologen component do not result
in long-lived charge separation because back electron transfer
from the reduced viologen component to the oxidized
ruthenium complex is very fast (300 ps).6,13,14 Of the 95% of
electrons transferred to the TiO2 nanocrystal component,
ca. 80% of these are transferred back to the oxidized ruthenium
complex component.15 Oxidized ruthenium complex compo-
nents that are not regenerated by back electron transfer from a
TiO2 nanocrystal are regenerated by electron transfer from the
sacri®cial donor TEOA.14,15 The 20% of injected electrons
which remain on the TiO2 nanocrystal component occupy trap
states and result in a localized shift of the quasi-Fermi level to
more negative potentials.16,17 These electrons, when transferred
to the viologen component, result in long-lived charge
separation. Application of a positive potential leads to
emptying of intraband states that mediate reoxidation of the
viologen component18 and an electron transfer from the
viologen component to the TiO2 nanocrystal component is
observed.19

These ®ndings are signi®cant because they suggest the optical
write±read±erase device shown in Scheme 2.20 In this device the
heterosupramolecular assembly TiO2±RV formed the working

Fig. 2 A sealed two-electrode device incorporating the heterosupramolecular assembly in Scheme 1, namely TiO2±RV, (a) prior to writing (open
circuit), (b) being written to using the defocused blue±green output of an Ar-ion laser (open circuit, 70 mW cm22, 0.5 cm2 area, 3 s), (c) being read
using the defocused red output of a He±Ne laser (open circuit, 5 mW cm22, 0.5 cm2 area) and (d) having being erased following application of
z1.0 V for 15 s.

Fig. 1 Optical absorption spectra of TiO2±RV at 20.45 V in MeCN±
EtOH (70 : 30, v/v) containing TBAP (0.10 mol dm23) and TEOA
(0.05 mol dm23) 0 s and 60 s after irradiation by the defocused blue±
green output of an argon-ion laser (200 mW cm22, 1.0 cm2 area, 3 s).
Also shown is the spectrum of TiO2±RV measured at 20.45 V
following application of z1.00 V for 15 s.
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electrode of a sealed two-electrode cell. The cell was ®lled with
an organic solvent containing the electrolyte TBAP and the
sacri®cial donor TEOA. The counter electrode was conducting
glass.

As can be seen from Fig. 2, under open circuit conditions it is
possible to write a well de®ned pattern, consisting of four spots,
to the device using the defocused green±blue output of an Ar-
ion laser.21 Visual inspection establishes these spots are the
same size as the area irradiated by the defocused laser beam,
while optical absorption spectroscopy establishes that the
appearance of these spots is due to formation of the radical
cation of the viologen component. As can also be seen from
Fig. 2, this pattern, which persists for up to 1 h under open
circuit conditions, may be read using the defocused red output
of a He±Ne laser.22 Importantly the red laser source does not
write to the device as it does not absorb light at this wavelength.
The pattern shown in Fig. 2 may be fully erased by applying a
voltage of z1.0 V for 15 s.23 Furthermore, so long as this
voltage continues to be applied, irradiation with the green±blue
output of an Ar-ion laser no longer results in a pattern being
written to the device. This corresponds to an off state. Clearly,
these ®ndings are consistent with those presented in Fig. 1 and
the mechanism proposed to account for them.

In summary, it is possible to write to the proof-of-principle
device whose construction is described using blue±green light
and to read the same device using red light. Furthermore, by
applying a suf®ciently positive potential the device may be reset.
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